China Custom Medical Device Plastic Injection Molding ABS PP PVC Molded Standard Part CNC Machined Plastic Parts with Best Sales

Model Number: HMI-01
Plastic Modling Type: injection
Processing Service: Moulding, Cutting
Item: Injection molded parts for medical device
Colors Available: Selectable
Shape: OEM available
Application: Medical use
Material: Plastic, metal, glass, hardware or more
Size: OEM Based
Processing Technic: Injection Molding,printing, die cutting,etc.
Thickness: As per customer’s demand
Certificate: ISO13485
Workshop Environment: 10K class clean room
Packaging Details: by carton or as per customer requests
Port: HangZhou/Hong Kong

Custom Medical Device Plastic Injection Molding ABS PP PVC Molded Standard Part CNC Machined Plastic Parts

Company NameHochuen Medical Technology Co., Ltd.
Business TypeManufacturer/OEM Factory
Manufacture CapabilitiesInjection molding, microfluidic devices, adhesive, die cutting, lamination, LSR, bonding (including laser welding, ultrasonic welding, heat staking, etc.), dry reagent handling, reagent blister packing, wet lab process, PCR QC test, CNC precision machining, laser machining, rapid prototyping, label printing, softgood manufacturing, sterilization/packaging,etc.
Plastic MaterialsABS, PC, PP, PS, POM, PMMA, PE, PA, HIPS, TPU, PE, BOPP, EPDM, Liquid Silicone Rubber (LSR), etc.
Mould Precision+/-0.01mm
Mould Life500,000 Times Shots
Mould CavitySingle cavity or multi cavity
Runner SystemHot runner and cold runner
CNC/Injection Molding MachinesWe have Makino, Fanuc, Sodick, Sumitomo injection molding machines from 50 tons to 450 tons for prototyping and large volume production.
Advanced Testing EquipmentPrismo 3D equipment for inspection, 2D testers and other
Colors AvailableBlack, white, clear, red, blue, or according to customer’s requirements.
File FormatSolidworks, DWG, PDF, AI, STP/STEP, etc.
Quality ManagementISO9001, ISO14001, ISO13485(ALL THE MEDICAL PRODUCTS MEET F.D.A STHangZhouRDS), ISO45001
Other services offeredPrinting, die cutting, CNC machining, assemblying and packaging, etc.
Payment MethodT/T or online transactions(by trade assurance) for option
Products ApplicationsMedical instrument parts and medical disposables, consumer electronics, sports, beauty and personal care products, baby’s products, biosensors for DNA analysis or chemical research, Medical foams/tapes or thermal insulation pad for other biometrics,small parts for automobile, aviation and aerospace equipments, etc.
PrototypingDrawings and quantities will be needed for a detailed quotation. Free Sample will be offered for approval after PO for molding is confirmed.

Factory Display
Detailed Images
Company Information

Our ServicesWhy should we work with Hochuen? Many customers may ask themselves when they are trying to find a reliable supplier. Now let’s come to Hochuen factory and find the answers.

Firstly, since establishment in 2004, Hochuen have been specializing in printing, die cutting, CNC machining, injection molding, assembling, packaging, soft goods manufac turing, etc. We are CZPT to offer 1 stop OEM services for our customers from prototype to large volume production.

Secondly, Hochuen owns a professional and enthuastic sales team, any of your questions will be responded promptly and we will keep in good communication with you. Free samples are available before mass production in case of any misunderstanding.

Thirdly, Hochuen is good at ISO13485, clean room injection molding, assembling and engineering capabilities. All the products will be tested by advanced equipments before leaving our factory.

Hochuen has cooperated with many of the famous companies and organizations in different industries, such as electronics, medical, telecom, automobile, sports, beauty & personal care, etc. We are engaging in providing more great solutions and better services for our business partners.

Packaging & ShippingFor packing, we can use inner plastic bags with foam, and outer cardboard boxes or wooden case with great protect to avoid any vibration. We can also use customized packages according to customer’s requirements.

1. What kind of printing you can do?We have silkscreen printing, pad printing, digital printing, UV printing, off-set printing, laser printing. (Including automatic printing, semi-auto printing, etc.)

2. How do you cut the parts?We have laser cutting, die cutting, CNC machining and stamping.

3. What Certificate do you have?We have certified with ISO 9001, ISO 14001, ISO 45001, and ISO 13485.

4. What tons of injection molding machine do you have?From 50 tons to 450 tons, we mainly focus on consumable medical device, LSR (liquid silicone rubber) also available, and we do mold in house.

5. How do you assemble the parts?Typically we have PSA bonding, laser welding, ultrosonic welding, diffusion bonding,

6. Are you available only prototyping or from prototyping to manufacturing?We are an OEM manufacturer, and provide 1 stop service from prototyping to mass production.All of our products are customized.

Importance of Wall Thickness in Injection Molded Parts

When designing injection molded parts, it is important to keep the wall thickness uniform. Uneven wall thickness can lead to warping and sinking. To minimize these problems, injection molded parts should have a wall thickness of 40 to 60 percent of the adjacent wall. The thickness of the wall should also fit within the range recommended for the resin that is being used. If the wall thickness is too thick, it should be cored out. Unnecessary wall thickness alters the dimensions of the part, reduces its strength, and may require post-process machining.

Designing out sharp corners on injection molded parts

Injection molded parttDesigning out sharp corners on injection molded components can be a challenging process. There are several factors to consider that impact how much corner radius you need to design out. A general rule is to use a radius that is about 0.5 times the thickness of the adjacent wall. This will prevent sharp corners from occurring on a part that is manufactured from injection molding.
Sharp corners can obstruct the flow of plastic melt into the mold and create flaws on parts. They can also cause stress concentration, which can compromise the strength of the part. To avoid this, sharp corners should be designed out. Adding radii to the corners is also an effective way to avoid sharp angles.
Another common problem is the presence of overhangs. Injection molding parts with overhangs tend to have side-action cores, which enter from the top or bottom. As a result, the cost of making these parts goes up quickly. Moreover, the process of solidification and cooling takes up more than half of the injection molding cycle. This makes it more cost-effective to design parts with minimal overhangs.
Undercuts on injection molded parts should be designed with a greater radius, preferably one or two times the part’s wall thickness. The inside radius of corners should be at least 0.5 times the wall thickness and the outside radius should be 1.5 times the wall thickness. This will help maintain a consistent wall thickness throughout the part. Avoiding undercuts is also important for easy ejection from the mold. If undercuts are present, they can cause a part to stick inside the mold after it has cooled.
Keeping wall thickness uniform is another important issue when designing plastic parts. Inconsistent wall thickness will increase the chance of warping and other defects.

Adding inserts to injection molded parts

Adding inserts to injection molded parts can be a cost-effective way to enhance the functionality of your products. Inserts are usually manufactured from a wide range of materials, including stainless steel, brass, aluminum, bronze, copper, Monel, nickel/nickel alloy, and more. Selecting the right material for your parts depends on the application. Choosing the correct material can help prevent defects and keep production cycles short. The insert material should be durable and resist deformation during the injection molding process. It must also be thin enough to provide the desired grip and have a proper mold depth.
The benefits of adding inserts to injection molded parts include the ability to design parts with unique shapes. These parts can be aesthetically pleasing, while still remaining durable and resistant to wear and tear. In addition, insert molding allows products to have a good external finish. In addition to being cost-effective, insert molding is considered a more efficient manufacturing method than other conventional methods.
Adding inserts to injection molded parts is an excellent way to enhance the strength and performance of your products. There are many different types of inserts, including threaded nuts, bushings, pins, and blades. Some types are even available with knurled outer surfaces that help them adhere to plastic.
In addition to being cost-effective, insert molding is environmentally friendly and compatible with many types of materials. Typical inserts are made of metal or plastic. Depending on the application, stiffening inserts may also be made from wood.

Importance of uniform wall thickness

Injection molded partThe uniformity of wall thickness is an essential factor in the plastic injection molding process. It not only provides the best processing results, but also ensures that the molded part is consistently balanced. This uniformity is especially important for plastics, since they are poor heat conductors. Moreover, if the wall thickness of an injection molded part varies, air will trap and the part will exhibit a poorly balanced filling pattern.
Uniform wall thickness also helps reduce shrinkage. Different materials have different shrinkage rates. For instance, thick parts take longer time to cool than thin ones. As the part’s thickness increases, cooling time doubles. This relationship is due to the one-dimensional heat conduction equation, which shows that heat flows from the center of the part toward the cooling channel. However, this relationship does not hold for all types of plastics.
The general rule for maintaining uniform wall thickness in injection molded parts is that walls should be no thicker than 3mm. In some cases, thicker walls can be used, but they will significantly increase production time and detract from the part’s aesthetic appeal and functionality. Furthermore, the thickness of adjacent walls should be no thicker than 40-60% of each other.
The uniformity of wall thickness is critical to the overall quality and efficiency of the injection molding process. An uneven wall thickness can cause twisting, warping, cracking, and even collapse. A uniform wall thickness also reduces residual stress and shrinkage. Injection molded parts are more stable when the wall thickness is uniform.
An injection molded part with thick walls can be problematic, especially when the molded parts are shaped like a cube. A non-uniform wall thickness can result in problems and costly retooling. Fortunately, there are solutions to this problem. The first step is to understand the problem areas and take action.

Using 3D printing to fabricate molds

splineshaftThe use of 3D printed molds allows manufacturers to manufacture a wide range of injection molded parts. However, 3D-printed molds are not as strong as those made from metallic materials. This means that they do not withstand high temperatures, which can degrade them. As such, they are not suitable for projects that require smooth finishing. In order to reduce this risk, 3D-printed molds can be treated with ceramic coatings.
Using 3D printing to fabricate injection molds can help reduce costs and lead times, allowing manufacturers to bring their products to market faster. This process also has the advantage of being highly efficient, as molds made using 3D printing can be designed to last for many years.
The first step in fabricating an injection mold is to design a design. This design can be complex or simple, depending on the part. The design of the mold can be intricate. A simple example of a mold would be a red cup, with an interior and exterior. The interior portion would have a large cone of material protruding from the other side.
Injection molding is an effective way to produce thousands of parts. However, many engineering companies do not have access to expensive 3D printers. To solve this problem, companies should consider using outside suppliers. In addition to speeding up the manufacturing process, 3D printing can reduce the cost of sample parts.
Plastic injection molding still remains the most popular method for high volume production. However, this process requires a large up-front capital investment and takes a while to adapt. Its advantages include the ability to use multiple molds at once, minimal material wastage, and precision dosing. With an increasing number of materials available, 3D printing can be a smart option for companies looking to manufacture a variety of plastic parts.
China Custom Medical Device Plastic Injection Molding ABS PP PVC Molded Standard Part CNC Machined Plastic Parts     with Best Sales China Custom Medical Device Plastic Injection Molding ABS PP PVC Molded Standard Part CNC Machined Plastic Parts     with Best Sales
editor by czh