China manufacturer CHINAMFG of Sports Equipment Plastic Injection Molded Parts

Product Description

 

Product Description

Plastic injection molds and mould manufacturer

1-Start from part design analysis

2-Mold design drawing and DFM report available so you can see how is the mold going to be before mold making
3-If product is complex,moldflow report will be present as well
4-In house mold making shop ensure you mold quality under well control.
5-Normally it takes 15-25 working days to make mold,precise time depends on part design

 

Product Description

ODM plastic injection molding

Plastic Materials:

PS, ABS, PP, PVC, PMMA, PBT, PC, POM, PA66, PA6, PBT+GF, PC/ABS, PEEK, HDPE, TPU, PET, PPO,…etc.

Standard:

ISO9001:2008

Other materials:

Rubber, Slilconce rubber, LSR,Aluminum, Zinc,Copper…Metal…etc.

Quality:

RoSH and SGS standard

Feature:

Non marking and Non flash

Size:

According to your 2D, 3D Drawing

Color,Quantity,Unit price,Tooling cost,Tooling size:

To be discussed

Package:

Standard exported Wooden box packed, Fumigation process(upon required)

Mold Building Lead Time:

T1, 15-25 Working days, Part measurement report (upon required).

Export Country:

Europe, Japan, America, Australian, UK, Canada, France, Germany, Italy…etc.:

Experience:

13 years experience in plastic injection mold making and plastic prouducts produce.

To be discussed

In-Mold Decoration, Injection Mould, Plastic Mold, Overmould, 2K Mould, Die-Casting Mould, Thermoset Mold, Stack Mold, Interchangeable Mold,Collapsible Core Mold, Die Sets, Compression Mold, Cold Runner System LSR Mold,…etc.

Mould Base:

Hasco Standard, European Standard, World Standard

Mould Base Material:

LKM, FUTA, HASCO, DME,…etc. Or as per Customer’s Requirment.

Surface Finish:

Texture(MT standard), High gloss polishing

Cavity/Core Steel:

P20, 2311, H13, 2344, Starvax 420, 236, AdC3, S136, 2312, 2379, 2316, 2083, Nak80, 2767 …etc.

Hot/ Cold Runner

HUSKY, INCOE, YDDO, HASCO, DME, MoldMaster, Masterflow, Mastip, ZheJiang made brand…etc.

Mould Life:

5,000 to 1,000,000 Shots. (According to your working environment.)

Design & Program Softwares:

CAD, CAM, CAE, Pro-E, UG, Soild works, Moldflow, CATIA….etc.

Equipments:

High speed CNC, Standard CNC, EDM, Wire Cutting, WEDM, Grinder, Plastic Injection Molding Machine for trial out mold from 50-3000T available.

Detailed Photos

 

 

How to Start

 

 

Company Profile

CEMAL Enginnering , professional plastic mold manufacturer in China, we focus on design and manufacturing plastic molds for

the Automotive, Home Appliances and other sectors.

Excited and ready to help support your project from the early stages of part development and tool design to fabrication and parts production via professional engineering, manufacturing, and project management, we are confident that our service level is second to none.

When you choose CEMAL- whether it’s for a single part, a small run or a multi-year contract – you’ll get the same attention to detail, the same problem-solving approach, the same quality solution. That’s the CEMAL promise.

Making our customers satisfying, Keeping our customer successful is the goal of CEMAL.

Why Choose CEMAL
Are you plHangZhou to get a supply of custom injection molds and probably do not have an idea of which Company is likely to offer effective products? If yes, then this article will be a perfect guide for you as it tries to highlight various reasons as to why you should choose Loxin mold as your supplier in injection molds. There are thousands of injection mold manufactures in China and therefore, determining the ideal company to partner with can quite be difficult. Not all factories offer genuine products or even provide the various services at affordable prices and there is thus the need to be careful on the company that you settle for. CEMAL mold has been in existence for more than 10 years now and has proved to be the leading producer of the custom injection mold through the exemplary services to the various customers. It would thus be a wise choice to consider us as your partner in supply of mold related products. Below are some of the reasons as to why you should consider our company

All products are availed at affordable prices
At CEMAL mold, all manufacturing process is done within the company and nothing is ordered from other companies and hence ensuring that all products are traded at the factory price to the various customers. We do not supply our products through any middle persons but rather directly to our clients. Brokers usually charge higher prices on the products in order to get their profits and therefore that is why we avail all products directly to the users to avoid such costs and hence avail the products at affordable prices to our clients.

Highly experienced in production of mold
As mentioned earlier on, CEMAL mold has been in operation for more than 10 years and therefore has efficient knowledge in production of molds and the related services to out esteemed customers. We have transacted with various customers even in the European countries and have always given a positive feedback on our services. If you still don’t believe in us then you can refer from your country on the kind of services offered. We can even provide contacts of the various clients served if they allow us to do so.

Quality services are offered
Our engineers are highly skilled and you can be sure that they offer quality services that meet our customer’s satisfaction. Our main goal is to ensure that all clients are fully satisfied in the mold injection services offered and the company is always ready to even make any changes to meet the customer demands. Our managers are friendly and communicate directly to you if you need a supply of our products without involving any intermediaries. This is in contrast to other manufactures who hire sales ladies to promote the products as they pay them on a commission basis. This calls for more costs as the amount is later transferred to the price of the products

 

FAQ

1. Are you a trading company or a manufacturer?

We are a manufacturer as you can see our workshop as above.

 

2. What kind of trade terms can you do?

 

EX-WORKS,FOB,CIF,DDP DDU

 

3. What is your terms of payment?

 

50% Mold cost deposit,balance mold cost +50% production cost paid when samples confimed,Balance production cost paid against copy of B/L. We accept T/T

 

4. Do you support OEM ?

 

Yes, we can produce by technical drawings or samples.

 

5. How about your delivery time?

 

Generally, it take 20-30 working days ( 15-20days make mold, 5-10 days for mass production).

 

Warranty: 3 Year
Shaping Mode: Injection Mould
Surface Finish Process: Polishing
Mould Cavity: Multi Cavity
Plastic Material: ABS, POM, PP, PC, PE, PA
Process Combination Type: Compound Die
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China manufacturer CHINAMFG of Sports Equipment Plastic Injection Molded Parts  China manufacturer CHINAMFG of Sports Equipment Plastic Injection Molded Parts
editor by CX 2023-12-03